Word Learning in Linguistic Context: Processing and Memory Effects
Alison R. Arnold and Yi Ting Huang

University of Maryland College Park, Department of Hearing and Speech Sciences

BACKGROUND

Children use linguistic context to distinguish word meanings (i.e., syntactic bootstrapping):
- Transitive and intransitive sentences (Naigles, 1990)
- Mass and count nouns (Bloom & Kelemen, 1995)

Syntactic bootstrapping isolates word meanings when non-linguistic cues are insufficient
- Distinguishes between syntactic structures
- Conveys role assignments

How does real-time processing of complex sentences affect children's use of syntactic bootstrapping?
- PP-attachment: Fail to revise misinterpretations after linguistic cue (Trueswell et al., 1999)
- Passives: Apply agent-first bias, fail to revise after past participle/by-phraso (Huang et al., 2013)
- Decreased accuracy in final interpretations

Hypotheses about how children's sentence processing affects their syntactic bootstrapping:
- Hypothesis 1: syntactic bootstrapping only when children understand syntactic construction
- Hypothesis 2: attempt bootstrapping always, based on incremental interpretation of utterance

Current study presented 5-year-olds with novel words embedded in passives (complex) and actives (simple)
- Agent-first bias weakened for familiar pronoun NPs, compared to full NPs (Huang et al., 2013)
- Passives: weaker agent-first bias removes need to revise, improves accuracy of interpretation
- Varied agent-first bias by placing novel ("blicket") or familiar nouns ("seal") as NP1s

METHOD

Participants: 40 English-speaking children (M_age = 5.4)
- Novel NP1 condition (n=20)
- Novel NP2 condition (n=20)

Procedure:
- Eye-tracking during fast mapping task
 - Familiarization phase
 - Test phase
 - Recall task
 - Presented with likely agents and themes
 - Asked to point to novel word again

Design: 2 Novel Word Position x 2 Construction Type
- Position: Novel NP1 vs. NP2 (between subjects)
- Construction: Passive vs. Active (within subjects)

FAMILIARIZATION PHASE

Show familiar object chasing Likely Theme
- Introduce familiar object ("Look at the seal!")
- Introduce novel objects ("Look at these!")
- Show Likely Agent chasing familiar object
- Show familiar object chasing Likely Theme

TEST PHASE

Recall: Presented with pairs of novel objects for each trial and asked, "Which one is the blicket?"

RESULTS

Accuracy of fast-mapping

- Novel NP1: Passive vs. Active
- Novel NP2: Passive vs. Active

Fixations after linguistic disambiguation

- Novel NP1 - Active vs. Passive
- Novel NP2 - Active vs. Passive

Accuracy of recall, when fast-mapping selection was incorrect

- Novel NP1: Passive vs. Active
- Novel NP2: Passive vs. Active

Accuracy of recall, when fast-mapping selection was correct

- Novel NP1: Passive vs. Active
- Novel NP2: Passive vs. Active

ANALYSES

Coding:
- Fixations/actions to novel Target ("blicket") or Competitor (other novel object) based on condition
 - Novel NP1-Passive: Target = Likely Theme
 - Novel NP1-Active: Target = Likely Agent
 - Novel NP2-Passive: Target = Likely Agent
 - Novel NP2-Active: Target = Likely Theme

Fixation: Preference for Target vs. Competitor
- Passive: Target minus Competitor (> 0 is better)
- Active: Competitor minus Target (< 0 is better)

Action: % of correct Target selections

Recall: % of selections that match original actions

SUMMARY

Successful syntactic bootstrapping requires efficient processing of linguistic cues during comprehension
- Processing challenges lead to interpretative failures that interfere with word learning
- Over time, misinterpretations generate ambiguity of word meanings within caregiver input
- May generate individual variation in vocab size

CONCLUSIONS

Processing challenges lead to memory interference
- Incomplete revision during learning phase may lead to multiple hypotheses for word meaning
- Even when correct interpretations are mentioned after learning, incorrect ones may linger