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Abstract
A traumatic brain injury (TBI) can lead to various long-term
effects on memory, attention, and mood, as well as the occur-
rence of headaches, speech, and hearing problems. There is a
need to better understand the long-term effects of a TBI for ob-
jective tracking of an individual’s recovery, which could be used
to determine intervention trajectories. This study utilizes acous-
tic features derived from recordings of speech tasks completed
by active-duty service members and veterans (SMVs) enrolled
in the Defense and Veterans Brain Injury (DVBIC)/Traumatic
Brain Injury Center of Excellence (TBICoE) 15-Year Longitu-
dinal TBI Study. We hypothesize that the individuals diagnosed
with moderate to severe TBI would demonstrate motor speech
impairments through decreased coordination of the speech pro-
duction subsystems as compared to individuals with no history
of TBI. Speech motor coordination is measured through corre-
lations of acoustic feature time series representing speech sub-
systems. Eigenspectra derived from these correlations are uti-
lized in machine learning models to discriminate between the
two groups. The fusion of correlation features derived from the
recordings achieves an AUC of 0.78. This suggests that resid-
ual motor impairments from moderate to severe TBI could be
detectable through objective measures of speech motor coordi-
nation.
Index Terms: speech motor coordination, acoustic analysis,
traumatic brain injury, machine learning

1. Introduction
The Traumatic Brain Injury Center of Excellence (TBICoE) has
reported approximately 430,720 incidents of traumatic brain in-
juries (TBIs) among U.S. service members between 2000-2020
[1]. While the majority of the TBI cases seen at Veterans Affairs
hospitals are mild TBI (mTBI), there are many cases of moder-
ate and severe TBI, which can affect an individuals quality of

life in the long term. These chronic effects may lead to im-
paired memory, attention, and motor functions [2]. To mitigate
these long-term effects, many individuals will undergo clinical
treatments targeting the relevant impairments. Individuals also
present with a wide variety of motor speech impairments, and
may benefit from speech therapy [3]. Quantitative analysis of
speech production in individuals who have had at least a mod-
erate TBI could lead to better understanding of how TBI affects
speech production, as well as measures that could be used for
planning intervention trajectories and tracking progress.

Acoustic features, as well as vocal biomarkers derived from
these features, have been used to characterize and detect speech
production differences in individuals with a history of TBI
[4, 5, 6, 7]. In a previous investigation of a cohort of participants
from the same larger study used here, it was found that speech
during diadochokinetic (DDK) tasks (e.g. rapid repetition of
syllables) was slower in adults with moderate through severe
TBI [4]. In other previous work, correlation structures formed
from acoustic features, used as a proxy measure of speech motor
coordination, have also shown promise in detecting changes in
cognitive performance for high school athletes with preclinical
mTBI [6]. In addition, correlation structures derived from read
speech, free speech prompts, and DDK tasks have been used to
detect and characterize lingering motor impairments in mTBI
patients who had been clinically considered recovered [7]. In
particular, features derived from the correlation structures are
used to capture the coordination both within and across speech
production subsystems using representative acoustic features
from the articulatory, laryngeal, and respiratory subsystems [8].

In this paper, we posit that the application of speech mo-
tor coordination features to individuals who have a history of
at least moderate TBI will provide further insight into the ways
that TBI affects speech motor coordination. In section 2, we de-
scribe how we apply our correlation structure analysis to acous-
tic features derived from a dataset of speech recordings col-
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lected at Walter Reed National Military Medical Center (WRN-
MMC). Eigenvalues extracted from this analysis are used to cre-
ate a gaussian mixture model (GMM) classifier to discriminate
between individuals who have a history of moderate through
severe TBI versus controls. The eigenvalues are further used
to characterize speech motor coordination across and within
three main speech production subsystems - articulatory, laryn-
geal, and respiratory. Section 3 describes the results from these
analyses. Section 4 discusses relevant interpretations from our
results and details our plan for further analysis with this dataset.

2. Methods
2.1. Participants

Speech and neuropsychological testing was carried out at
WRNMMC as part of the DVBIC-TBICoE 15-year Longitu-
dinal TBI Study (Sec721 NDAA FY2007). Additional details
on inclusion criteria, group definition, and recruiting procedures
are found in Lange et al. (2019). The current analyses included
116 participants from a possible pool of 213 participants with
complete speech data. Eleven participants were excluded due to
having an equivocal or unknown TBI history. Individuals were
also excluded because of invalid scores on performance valid-
ity tests (n = 22) [9, 10]. Finally, participants were excluded if
they had history of a mild TBI (n = 64). TBI severity was clas-
sified as follows: Moderate TBI: loss of consciousness (LOC)
>30 mins-24 hours, post-traumatic amnesia (PTA) 1-7 days,
and intracranial abnormality (ICA) present or absent; Severe
TBI: LOC >24 hours, PTA >7 days, and ICA present or absent;
Penetrating TBI: breach of the cranial vault and/or dura mater
by external object (e.g., bullet, shrapnel) and/or skull fragment
(i.e., skull fracture). In total, 36 individuals with a history of
moderate (31%), severe (38%), or penetrating (31%) TBI were
included. Individuals with no history of TBI included 37 in-
jured controls (orthopedic/soft tissue injury with no evidence of
alteration of consciousness (AOC), LOC, or PTA as result of
injury) and 43 non-injured controls, for a total of 80 controls.

2.2. Procedure

Speech-language assessments took place in a double-walled
sound-attenuating booth with the participant seated in front of
a video monitor and the examiner visible through the examina-
tion window. Recordings were collected onto a laboratory com-
puter via a cardioid dynamic microphone (Shure PG48) with
a constant mouth-to-microphone distance of 14 cm. Record-
ings were made through an internal soundcard (RME Hammer-
fall DSP Multiface II) using a software audio recorder func-
tion (MATLAB 2007). Participants were instructed via a pre-
recorded video to repeat one trial each of repetition of four di-
adochokinetic (DDK) sequences: /p2/, /t2/, /k2/, /p2t@k@/, as
fast and as accurately as possible on a single breath. Partici-
pants subsequently watched a wordless picture story and were
prompted to retell the story for their free-speech sample. If par-
ticipants were unable to provide an adequate story-telling sam-
ple, they were asked to tell the examiner about their day. Partic-
ipants were then asked to read The Caterpillar passage [11].

2.3. Low-level feature extraction

Acoustic feature time series and delta time series were extracted
from each recording. These features have been selected to rep-
resent the three speech subsystems of interest (articulatory, la-
ryngeal, respiratory). The first three vocal tract resonances (F1-

F3) were calculated at 100Hz using the Kalman-based autore-
gressive moving average (KARMA) software tool, which pro-
vides a continuous time series of vocal tract resonances using
an energy-based voice detector, utilizing a Kalman smoother to
estimate formants through silent gaps in the signal [12]. Fun-
damental frequency (F0), mel-frequency cepstral coefficients
(MFCCs), and harmonic-to-noise ratio (HNR) were extracted
using the Praat software at 1000 Hz, 200 Hz, and 100 Hz re-
spectively [13, 14]. Cepstral peak prominence (CPP) and creak,
representing acoustic correlates of voice quality, were extracted
using custom MATLAB scripts at 100 Hz [15, 16, 17]. Inten-
sity, or the speech envelope, was extracted at 100 Hz using a
custom MATLAB script that provides a smooth contour of am-
plitude peaks based on an iterative time-domain signal envelope
estimation [18]. This algorithm estimates both the contributions
of the respiratory system and resonance-harmonics interaction
to the amplitude modulation of a speech envelope.

A software-based acoustic-to-articulatory inversion algo-
rithm was used to extract out tract variables (TVs), represent-
ing the movement of articulators in the vocal tract [19]. The
algorithm takes in an acoustic speech signal and outputs the
trajectories of six different vocal tract constriction variables,
from the Task Dynamics model: lip aperture (LA), lip protru-
sion (LP), tongue body constriction location (TBCL) and de-
gree (TBCD), and tongue tip constriction location (TTCL) and
degree (TTCD). Each of these was extracted from recordings
and used as low-level time series. The articulators were used as
a comparison to formants, which are a higher-level representa-
tion of the articulators.

2.4. High-level feature extraction

Multivariate auto- and cross-correlations of the low-level fea-
tures were calculated to produce proxy measures of coordi-
nation within and across the underlying speech motor subsys-
tems [20, 21]. Channel-delay correlation matrices were calcu-
lated from combinations of the acoustic and articulatory low-
level feature time series, representing the time-delay embedding
space by expanding the dimensionality of the low-level acoustic
and articulatory time series. This process is described in Figure
1. To capture the relative feature coupling strengths across mul-
tiple time delays, these correlation matrices were calculated at
four delay scales, with delay spacings of 1, 3, 7, and 15 data
samples for all of the acoustic feature time series.

Cross-
correlation

Sampled Cross-correlation Output
Auto-correlation

XCorr Lag Samples

Co
rr

el
at

io
n

Frequency Tracks of Formants

Matrix Element

M
at

rix
 E

le
m

en
t

25

0 100 150 200

Time (s)

Fr
eq

ue
nc

y 
(H

z) Articulation-based 
vocal tract resonant 

trajectories

Extract Eigenvalues
More Complexity

(more random/erratic)

Less Complexity
(more coupled)

Healthy
Eigenvalue 

Index

Ef
fe

ct
 S

iz
e

Figure 1: Examplar process of high-level correlation structure
extraction using F1, F2, and F3 time series, and subsequent
interpretation of eigenvalue patterns.

Correlations across features were calculated within and
across speech subsystems to capture the interaction of these
subsystems during speech production. Feature combinations
(e.g. feature 1 x feature 2) were computed by concatenating the
feature vectors. For example, F0 x formants yielded a 4 ∗ t fea-
ture matrix, where t is the total number of samples in the time
series, due to a 1∗ t F0 matrix concatenated with a 3∗ t formant
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matrix. This feature matrix was used to calculate the result-
ing correlation matrices. Correlation matrices for speech tasks
were calculated for the following feature combinations and their
delta-time series equivalents: F0, formants, envelope, MFCC,
TV, envelope x formants, F0 x formants, F0 x envelope, F0 x
envelope x formants. Additionally, correlations were computed
for vocal source features: HNR, CPP, creak, F0 x CPP, F0 x
HNR, F0 x HNR x CPP, F0 x envelope x HNR x CPP, envelope
x HNR x CPP, envelope x CPP. This led to a total of 27 differ-
ent feature combinations. Any feature correlated with F0 was
interpolated to a sampling rate of 1000 Hz using spline interpo-
lation. A masking technique was used to include only voiced
segments for all correlations, using the locations where F0 >0.

Eigenvalues of all resulting correlation matrices were ex-
tracted by rank-order (from greatest to smallest). Each correla-
tion matrix correlating n time series had 15 ∗ n eigenvalues ex-
tracted to comprise the eigenspectrum (e.g., correlations of F0
and envelope lead to 15*2=30 eigenvalues). Eigenvalues from
each delay scale for a single task and feature combination were
concatenated to form a final feature vector with n ∗ 15 ∗ 4 el-
ements to input into a classifier. The eigenvalues from each
delay scale were also used to characterize the complexity of the
signals, using the interpretation outlined in Figure 1.

Adapted Gaussian Mixture 
Model (GMM)

Dimensionality Reduction

Correlation 
Structure 
Feature Sets

Principal 
Component 
Analysis: 

Top 6 PC’s

Training

Universal Background 
Model (unsupervised)

Bayesian Adapted 
Target Models 

(supervised) Control Model

Gaussian Mixture Model (GMM)
• 10 components
• 4 training iterations

TBI Model

𝚺
Testing

+-
Output
Score

Figure 2: Gaussian Mixture Model (GMM) architecture used to
discriminate between participants with or without a history of
TBI.

2.5. Classification

Classification of participants with or without a history of TBI
was done with leave-one-out cross validation using a GMM
(Figure 2). For each task and feature combination, the top
6 principal components from principal component analysis
(PCA) were extracted from the eigenspectra vector. In each
cross-validation fold, an ensemble of ten GMMs were created
over four iterations using the PCA features from the training set.
Control and TBI GMMs were generated using supervised adap-
tation of the ensemble GMMs, a technique that is commonly
used in speaker verification [22]. The likelihood of the held-
out test participant belonging to each group was computed by
summing up the likelihood of the participant belonging to each
GMM in the ensemble. The final model output score was the ra-
tio of the log likelihood of the participant belonging to the TBI
GMMs over the log likelihood of the participant belonging to
the control GMMs. The model output scores were used to com-
pare model performance across features and tasks using the area
under the receiver operating characteristic curve (AUC), created
by plotting the true positive rate against the false positive rate at
various threshold settings.

Features were fused if they produced sufficient cross-
validation accuracy within each training fold. For each partici-
pant, the model output scores and training set AUC were saved
from each feature and task combination. First, fusion was com-
puted across all features within a task through the process out-

lined in eq. (1), where p is a specific participant, t is a specific
task, and f is a specific feature.

scorep,t =

∑
f∈Features maskp,t,f ∗ scorep,t,f∑

f∈Features maskp,t,f
(1)

For each participant and feature, a mask was created where the
value was 1 if the associated training AUC was greater than 0.5.
A sum was taken across all model output scores from features
that met that criterion and divided by the number of features
used. The fusion score across multiple tasks was computed by
taking the sum of the model output scores for each participant,
and dividing by the number of tasks. This was first done to
combine information from the DDK tasks, and then to combine
scores from DDK, read, and free speech. These fused scores,
across a single task and across all tasks, were subsequently used
to calculate the fused AUC.

3. Results
3.1. Classification

Fusing across all speech tasks and features resulted in an AUC
of 0.78. AUCs for individual tasks varied, but, notably, the AUC
for the read speech task was 0.73 and the AUC for the DDK task
was 0.72. Table 1 lists the AUC values for fusions within a task.
Table 1 also includes a comparison of the individual AUCs for
formants and TVs. AUC >0.595 has a p-value <0.05.

Table 1: Classification performance (AUC) across tasks for all
fused features, formants, and TVs.

Task All Features Formants TVs

Diadochokinetic (DDK) 0.72 ± 0.11 0.54 0.52
Read Speech 0.73 ± 0.10 0.66 0.70
Free Speech 0.67 ± 0.11 0.41 0.50
Fused All Tasks 0.78

3.2. Speech motor coordination characterization

Cohen’s d effect sizes of the eigenvalues derived from TBI vs
control groups were calculated across all features and tasks.
Figure 3 shows the effect sizes for the correlation of F0 across
all tasks, and the interaction between F0 and formants (delay
scale: 15 ms; 15 samples), two features which showed up as top
individual features. Figure 4 shows the effect sizes for the cor-
relation of formants and tract variables (delay scale: 150 ms; 15
samples), to compare across articulatory measures. The eigen-
values are ranked from largest to smallest, and an effect size >0
indicates that the eigenvalue was greater in the TBI group. As
shown in Figure 1, a pattern of positive effect sizes for larger
eigenvalues and negative effect sizes for smaller eigenvalues
would suggest lower complexity of signals in the TBI group,
while the opposite pattern would suggest higher complexity of
signals in the TBI group.

The patterns in the left panel of Figure 3 indicate that par-
ticipants with a history of TBI have lower complexity of F0
across all tasks, suggesting more coupled vocal source move-
ments. The morphology of the patterns for the interaction of F0
and formants (right panel of Figure 3) also suggest that there
is lower complexity in the movements of TBI participants for
all tasks, indicating higher coupling between the two subsys-
tems as well. The eigenvalue patterns for the formants and TVs
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also suggest that talkers with TBI have lower complexity (Fig-
ure 4), but this was only true for the read speech and DDK tasks.
The effect sizes for the coordination features of formants and
TVs for the free speech task were generally small across all
the eigenvalue indexes, suggesting that other features may have
been driving the classification performance for that speech task.
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Figure 3: Cohen’s d effect sizes of eigenspectra extracted from
coordination of F0 (left) and the interaction of F0 and formants
(right). Eigenvalues are ranked from largest to smallest.

Presentation Name - 6
Author Initials  MM/DD/YY

Effect Size Plots

5 10 15 20 25 30 35 40 45
Eigenvalue Index

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

TB
I E

ffe
ct

 S
iz

e

Formants
DDK
Read Speech
Free Speech

10 20 30 40 50 60 70 80 90
Eigenvalue Index

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

TB
I E

ffe
ct

 S
iz

e

TVs
DDK
Read Speech
Free Speech

Figure 4: Cohen’s d effect sizes of eigenspectra extracted from
coordination of formants (left) and tract variables (right).

4. Discussion
In this paper, we describe a speech protocol and analytical
methodology to detect and characterize speech motor coordina-
tion in individuals who have had a history of moderate through
severe TBI. A GMM created from a fusion of correlation fea-
tures derived from acoustic time series was able to discrim-
inate between control and TBI participants with an AUC of
0.78. These results provide evidence that utilization of co-
ordination features derived from speech tasks can provide in-
sight into speech motor coordination issues in individuals with
a history of TBI, and highlights the residual effects that can be
present in an individual who has experienced at least moderate
TBI. It suggests that this approach could be used to augment
existing clinical assessments to monitor long-term recovery for
active-duty service members and veterans.

Comparison of eigenvalue patterns across tasks provided a
characterization of the speech of individuals with a history of
TBI and suggests that articulators are more coupled during read
speech and DDK tasks in participants with this. Patterns sug-
gest that TBI participants had higher coupling within the la-
ryngeal speech production subsystem as compared to controls.
Patterns also implied higher coupling of the interaction between
the articulatory and laryngeal subsystems during all tasks for
the TBI group. This highlights that it is important to look
across subsystems for characterization of speech motor coor-
dination, as speech production relies on precise timings within
and across speech subsystems. Classification performance dif-
fered across the three tasks, specifically with features derived

from read speech and DDK tasks performing better than fea-
tures derived from free speech. This suggests that there may be
task dependent speech motor coordination demands in chronic
TBI, which leads to coordination differences being witnessed in
some tasks, but not others [23]. As the study progresses, future
work will analyze how the results generalize to other speech
tasks, whether the speech patterns are consistent across lon-
gitudinal speech samples collected from the same talkers, and
whether these patterns will persist in a larger group of partici-
pants.

In previous studies of major depressive disorder (MDD),
coordination features derived from tract variables performed
just as well as, and sometimes better than, coordination fea-
tures derived from formants in discriminating between individ-
uals with MDD vs neurotypical controls [24, 25]. We saw sim-
ilar results discriminating between the two groups in this pa-
per. We aim to analyze the movements that are derived through
acoustic-to-articulatory methods and quantify how they relate to
the information presented by formants. We hope that this will
enable a better understanding of the coordination of the move-
ments of articulators.

The cohort of individuals in this dataset, both individuals
with a history of TBI and controls, have also been assessed
for additional comorbidities, such as post traumatic stress dis-
order, depression, mood disorders, and sleep disorders. As with
the current paper comparing individuals with and without TBI,
MDD can manifest as low complexity in speech motor coor-
dination [20, 26]. Previous studies have primarily focused on
individuals who have a single diagnosis, without documented
comorbidities. In subsequent analysis, we plan to analyze the
effects of additional diagnoses in the control and TBI groups
to see if we can better characterize and cluster speech motor
coordination differences for individuals accordingly. Objective
and quantitative analysis of these differences will provide in-
sight into how the different conditions affect speech production
subsystems, and could lead to better tracking and personalized
intervention trajectory planning by clinicians.
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