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Abstract

A vocoder is used to simulate cochlear-implant sound processing in normal-hearing listen-

ers. Typically, there is rapid improvement in vocoded speech recognition, but it is unclear if

the improvement rate differs across age groups and speech materials. Children (8–10

years) and young adults (18–26 years) were trained and tested over 2 days (4 hours) on rec-

ognition of eight-channel noise-vocoded words and sentences, in quiet and in the presence

of multi-talker babble at signal-to-noise ratios of 0, +5, and +10 dB. Children achieved poorer

performance than adults in all conditions, for both word and sentence recognition. With train-

ing, vocoded speech recognition improvement rates were not significantly different between

children and adults, suggesting that improvement in learning how to process speech cues

degraded via vocoding is absent of developmental differences across these age groups and

types of speech materials. Furthermore, this result confirms that the acutely measured age

difference in vocoded speech recognition persists after extended training.

Introduction

Cochlear-implant (CI) users show substantial variability in speech recognition performance

[1,2], a result of biological, surgical, and device-related factors [3]. To remove some of the

unknown sources of variability in speech recognition performance, CI users’ performance can

be studied using acoustic simulations of CI processing, a multi-channel vocoder, presented to

normal-hearing (NH) listeners [4]. In a vocoder, an acoustic signal is bandpass filtered into a

limited number of channels, the temporal envelope (i.e., the relatively slow amplitude variation

over time of the acoustic waveform) is extracted from each channel, and these slowly varying

envelopes are used to modulate a carrier signal such as a narrowband noise [5].

The way that the signal processing and CI simulation is performed, as well as other method-

ological choices, affect vocoded speech recognition performance. A larger number of vocoder

channels increases performance because of improved spectral-temporal representation of the

original acoustics [6–8]. The type of acoustic carrier affects performance because it affects the

representation of the temporal envelope and the spectrum [9,10]. If frequency-to-tonotopic
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place mismatch is simulated, where speech information is now presented at higher frequencies

than is typical (as would occur if the CI array has a relatively shallow insertion into the

cochlea), an increase in shift would decrease performance [11,12]. In such a case, vowel for-

mants would be shifted to higher frequencies and thus need to be adapted to or relearned.

These signal processing choices may differentially affect the ability to perceive different speech

materials such as consonants vs vowels and words vs sentences [6,10,13–15]. Other methodo-

logical approaches, such as if listeners receive training and how such training is implemented,

will also affect performance [11,12,16–21]. Furthermore, these methodological choices may

interact. For example, the use of a tonal carrier and a relatively small number (e.g., six) of chan-

nels introduces the need to consider the size of the auditory filters that contain stimulus

energy. This is because the carrier sidebands caused by the envelope modulations might be

resolved if the modulation rates are sufficiently high, and thus dramatically improve perfor-

mance [9].

Characteristics about the listeners, such as their age and hearing status, will also affect per-

formance. Towards the older end of the lifespan, hearing loss and/or advancing age decreases

vocoded speech recognition [8,14,22,23]. Towards the younger end of the lifespan, vocoded

speech recognition performance is often poorer for children compared to adults [12,13,24–

29]. Studying vocoded speech recognition in children is important as it helps clarify how lan-

guage is processed and learned via highly degraded signals as are presented via a CI. These

studies have almost uniformly found that adults are better than children at vocoded speech

recognition, although the exact age at which children reach adult-like performance has varied

across studies. Eisenberg et al. [13] compared noise-vocoded speech recognition in children

and adults. In that study, they tested two groups of children (ages 5–7 and 10–12 years) and

adults (18–55 years), and used stimuli specifically designed for a child’s vocabulary (HINT-C,

PBK, and VIDSPAC). There was no significant difference in vocoded speech recognition

between the older children and adults when listening to speech processed into four or eight

channels. However, vocoded speech recognition in the younger children was significantly

worse than the older children and adults. Dorman et al. [26] found that children (3–5 years)

needed more channels than adults on the easy and hard words of the multisyllabic lexical

neighborhood test to achieve similar performance. Bertoncini et al. [30], tested children (5–7

years) and young adults on discrimination of 16-channel noise-vocoded vowel-consonant-

vowel nonsense disyllables (i.e., a small closed set of stimuli), and found no significant differ-

ence between groups. Huyck [24] tested 11–13, 14–16, and 18–22 year old participants on

meaningful English sentences with context using a six-channel noise vocoder and found that

11–13 year old listeners had worse performance than adults. As a whole, it appears that the

exact age at which adult-like performance is achieved is impacted by the testing materials and

procedure. In addition, there is evidence that non-sensory factors such as auditory attention

and working memory may impact performance [31].

Another characteristic pertaining to the listeners that will affect performance is their previ-

ous exposure to vocoded speech because listeners adapt to the signal degradation and their

scores improve with increased exposure and training. Adults with no prior exposure to

vocoded speech can understand <10% of the words when listening to their first six-channel

noise vocoded sentence, but quickly improve over a span of 20–30 sentences [18]. Training is

critical when frequency-to-place mismatch or shift is introduced to the channel center fre-

quencies. Experiments using shifted stimuli show large initial performance decrements and

longer time scales of improvement until performance saturation compared to unshifted sti-

muli [11].

Extended training was omitted in many prior vocoded speech recognition studies with chil-

dren; short testing periods are desirable when testing children because of attention and fatigue.
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For the previous studies that include training, there has been parallel improvement across

groups of children and adults [12,24]. Such a finding is important; if vocoded speech recogni-

tion improvement with training differed between children and adults, this could introduce a

confound for acute comparisons between groups. For example, children may improve more

rapidly than adults in vocoded speech recognition to the point that the age-related differences

are eliminated. Huyck [24] tested noise-vocoded sentences on different groups of adolescents

and young adults (11–22 years); initial performance for all groups began at an average of

>50% correct and improved approximately 5–10%. Waked et al. [12] tested eight-channel

sine-vocoded matrix sentences using different amounts of shift on children (8–10 years) and

young adults (19–23 years). For the 0- (control or no shift) and 3-mm (relatively small shift

compared to the length of the CI array and typical 35-mm length of the cochlea) conditions,

initial performance began at an average of>50% correct performance and improved approxi-

mately 20% after 4 hours of training. For the 6-mm (relatively large shift) condition, initial per-

formance began at an average of approximately 25% correct and improved approximately 40%

after 4 hours of training. Critically, the differences between adults and children disappeared

for large 6-mm shift and low performance levels. Waked et al. [12] concluded that the lack of

age-related performance differences between children and adults for the 6-mm shift condition

was a result of the stimulus manipulation. An alternative interpretation, however, is possible; it

was the initial performance level that produced the lack of age-related performance

differences.

Therefore, we sought to clarify if shift or low performance caused the interaction between

age, shift, and training seen in Waked et al. [12]. This was done by omitting shift as a factor,

but testing materials that produced a range of performance. Specifically, we tested more diffi-

cult speech materials (words and sentences) compared to the closed set of matrix sentences

used in Waked et al. [12], and included various levels of background noise. Across these condi-

tions, we aimed to achieve a wide range of performance that would allow us to see if initial per-

formance affects the differences in vocoded speech recognition between children and adults.

This experiment was designed to answer three questions. (1) Do children and adults differ in

vocoded word identification and sentence recognition? (2) Does training cause differential

improvement in vocoded speech recognition between children and adults? (3) Are these per-

formance differences and improvement rates affected by initial performance? We hypothe-

sized that vocoded speech recognition would initially be worse for children than adults,

children and adults would improve at different rates, the difference would be much smaller

after training, and that there would be an interaction with condition such that age-related per-

formance differences would not occur at the most difficult signal-to-noise ratios (SNRs).

Materials and methods

Listeners and equipment

Twenty children (8–10 years) and 21 young adults (19–26 years) were tested. All listeners had

thresholds�20 dB Hearing Level between 0.25 and 8 kHz. All were native English-speaking

with no reported developmental disabilities. None of the listeners had previous experience

with listening to vocoded speech. All children assented and all adults consented to participa-

tion in the study, the process approved by the University of Wisconsin-Madison Institutional

Review Board. The authors had no conflicts of interest and the Institutional Review Board

oversaw the ethical conduct of the research.

The experiment was run using custom software in Matlab (The Mathworks, Natick, MA)

and conducted in a standard double-walled sound booth with dimensions 7’ × 7’ × 6.5’ (IAC,

New York, NY). The stimuli were delivered over circumaural headphones (HD650;
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Sennheiser, Hanover, Germany) driven by a real-time sound processor (RP2.1, PA5, and HB7;

Tucker-Davis Technologies System 3, Alachula, FL).

Stimuli

The stimuli consisted of target words and sentences spoken by different males, and both

groups were presented the same stimulus corpuses. Only male talkers were necessary given

that the stimuli would be vocoded [10]. The words were a closed set of 50 one-syllable, conso-

nant-nucleus-consonant (CNC) words (list 1) [32]. The sentences were an open set of IEEE

sentences [33], chosen from a list of 500 without replacement for each listener.

The male-spoken target speech was presented diotically at a level of 65 dB-A, either in quiet

or in two-talker babble at one of three SNRs: 0, +5, and +10 dB. The root-mean-square energy

over the entire target stimulus duration was used to calculate the resulting stimulus levels. The

babble consisted of randomly selecting a portion of a string of IEEE sentences spoken by a sin-

gle female, but two talkers were simulated by choosing different starting points in the continu-

ous IEEE sentences. The babble was 5 s in duration for words and 8 s in duration for

sentences, and the target word or sentence started 3 s after the beginning of the babble.

For the stimuli with babble, the male-spoken target and female-spoken babble were

summed before vocoding. A pre-emphasis was applied by high-pass filtering the stimuli using

a 1st-order Butterworth filter with a 1200-Hz cutoff frequency. The stimuli were then bandpass

filtered into eight channels using 4th-order Butterworth filters, which provides a reasonable

simulation of CI performance [6] and minimizes any effects of talker gender on performance

[10]. The channel corner frequencies were logarithmically spaced between 300 and 8500 Hz.

The envelope of each channel was extracted via half-wave rectification and low-pass filtering

using a 2nd-order Butterworth filter with a 400-Hz cutoff frequency. The envelope of each

channel was then used to modulate a narrowband noise carrier with a bandwidth that corre-

sponded to the bandwidth of the filtered channel. The modulated noisebands were summed

into an acoustic signal. For the conditions with the two-talker babble, ten tokens of target with

masker were generated for each possible word or sentence for each SNR.

For the CNC words, the target was preceded by a preemptive word. There was an unpro-

cessed 0.45-s word “Ready” spoken by a male talker, presented 1.55 s before the target word. If

there was babble, “Ready” was spoken 1 s after the beginning of the babble. For sentences,

there was no preemptive word before the target was presented.

Procedure

Words. Ten children (age range = 8–10 years, mean = 8.6 years, standard deviation = 0.7

years) and 11 young adults (age range = 20–26 years, mean = 21.5 years, standard devia-

tion = 1.8 years) were tested on a CNC word recognition task. Before testing, listeners were

shown the written words, were asked to read each word out loud, and provide its definition.

An experimenter corrected a listener’s pronunciation and/or provided the definition if neces-

sary. For the children, a short pseudo-random test of the words was performed by the experi-

menter to ensure that the children could pronounce all words. All listeners correctly

pronounced most of the words initially. Pronunciation and definitions were provided for only

a small number of tokens and listeners. No listener was excluded based on their previous

knowledge and their initial ability to correctly pronounce the words.

Adults were alone in the sound booth during testing, but children were accompanied by an

experimenter to ensure that they could adequately control the computer user interface. The

children could also ask the experimenter questions for clarification, if necessary.
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Correct answer feedback appeared after each response, which was considered the training

element. A single run consisted of 40 trials (10 words at each of the four SNRs). During each

run, the words were picked randomly from the list with replacement. Different listeners were

presented a different random order of words.

Both children and adults were tested on the same procedure in two separate two-hour ses-

sions on different days. The second testing day was within three weeks of the first. All adults

completed 20 runs; children completed 11–15 runs. Breaks were allowed as needed, typically

about every three runs. The difference in the number of runs completed between was because

the children needed longer and more frequent breaks than the adults [12].

Sentences. Ten different children (age range = 8–10 years, mean = 8.8 years, standard

deviation = 0.8 years) and 10 different young adults (age range = 19–22 years, mean = 20.3

years, standard deviation = 0.9 years) were recruited for testing on IEEE sentence recognition.

Unlike the CNC word recognition test, there was no familiarization with sentences. The

method for testing with sentences was the same as that with words except that adult listeners

typed their responses and an experimenter entered children’s responses (the experimenter ver-

bally repeated the child’s response at an audible level, typed the response, and showed it to the

child for approval). Correct-answer feedback was provided to all listeners. This was done visu-

ally for adults, and both visually and verbally for children. Each run consisted of 20 trials, five

sentences presented at each of the four SNRs in randomized order. The sentences were ran-

domly selected from the list of 500 sentences without replacement. All adults completed 20

runs; all children completed 15 runs.

Results

The percentage of correct responses was calculated for words and sentences. For words, per-

cent correct for each condition and each run was based on ten words. For sentences, percent

correct was determined from the percentage of key words that were correctly identified out of

five key words per sentence [34]. The average percent correct as a function of run number is

shown in Fig 1 for words (top panels) and sentences (bottom panels), at the four different

SNRs. The percent correct values were transformed to rationalized arcsine units [35] and then

were analyzed with a four-way mixed Analysis of Variance with factors between-subject factors

of Group (child or adult) and Corpus (words or sentences), and within-subject factors of Run

and SNR (quiet, 0, 5, or 10 dB). Only the first 11 runs were included in the analysis, the small-

est number of runs completed by all of our listeners.

Adults performed better than children [F(1,37) = 48.4, p<0.0001]. There was no significant

interaction with age (p>0.05 for all possible interactions), suggesting roughly parallel rates of

improvement between adults and children for all conditions, including similar effects of SNR

and of Corpus. This lack of interaction can also be seen in Fig 2, that compares acute (run 1)

and trained (average of runs 9–11) performance.1 Performance significantly improved as a

function of run number [F(10,370) = 29.4, p<0.0001]. This improvement statistically reached

asymptote at run 7 (Helmert contrast: p<0.01 for up to run 6 vs. later, p>0.05 for all subse-

quent comparisons). More specifically, for words in quiet, adults had an average percent cor-

rect of 68% for run 1 (top row, left-most panel of Fig 1). Average percent correct increased and

reached asymptote at run 7 at approximately 90%. Children had an average percent correct of

50% for run 1. Average percent correct increased and reached asymptote at about 70%. For

sentences in quiet, adults had an average percent correct of 85% for run 1 (bottom row, left-

most panel of Fig 1). Average percent correct increased and reached asymptote at approxi-

mately 90%. Children had an average percent correct of 68% for run 1. Average percent correct

increased and reached asymptote at approximately 75%.
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The data from each condition in Fig 1 was fit with a saturating exponential of the form:

y ¼ A½1 � expð� BxÞ� þ C

where x is the run number, y is percent correct, and A, B, and C are free parameters. The acute

performance for adults is also shown in Fig 1 with a horizontal black dashed line. In the top

row for words, the fit lines for the child performance cross the black dashed line for acute

adult performance between runs 5 and 7. In the bottom row for sentences, these lines never

cross. The fits provide further evidence that adult performance was significantly better than

child performance.

Reducing the SNR decreased performance [F(3,111) = 1225.2, p<0.0001] and each SNR

was significantly different from the others (Tukey Honestly Significant Difference test:

p<0.001 for all comparisons). The effect of corpus was not significant [F(1,37) = 1.56,

p = 0.22]. There was a significant corpus×SNR interaction [F(3,111) = 56.3, p<0.0001], which

occurred because performance for sentences was better than words at low SNRs, but worse

than words at 0-dB SNR (see Fig 2). That is, context effects occurred in the sentences used in

this study, whereby recognition of a portion of the sentence likely improved the probability of

recognition other portions of the sentence. Therefore, listeners were disadvantaged at the 0-dB

SNR for the sentences compared to the more favorable SNRs. Such context effects were absent

for the isolated words. There was a significant corpus×run interaction [F(10,370) = 3.78,

p<0.0001], which may have occurred because performance with sentences appeared to asymp-

tote later in training than words.

Fig 1. Percentage of correct responses as a function of run number. The error bars are ±1 standard error in length. Open symbols show adult performance and closed

symbols child performance. The top row shows the results for words and bottom row for sentences. Solid lines represent fits to the data using a saturating exponential

function, y = A[1−exp(−Bx)]+C. The horizontal dashed black line shows the average acute (run 1) performance for adults.

https://doi.org/10.1371/journal.pone.0244632.g001
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Discussion

This experiment was designed to investigate differences in child and adult vocoded speech rec-

ognition, particularly with regard to effects of training. We hypothesized that the difference in

vocoded speech recognition between adults and children would be affected by the initial start-

ing performance and training. While we found that adults were better than children at

Fig 2. The top row shows acute (run 1) vs. trained (average of runs 9–11) performance for words (left column) and sentences (right column).

The bottom row shows the difference between the trained and acute performance. Bars show the average and error bars show +1 standard deviation.

https://doi.org/10.1371/journal.pone.0244632.g002
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vocoded speech recognition, this difference was constant across conditions, and independent

of starting performance level (Figs 1 and 2). Furthermore, with training, there was no differen-

tial improvement in vocoded speech recognition between adults and children. Taken together

with the broader literature, it appears that differences in acute vocoded speech recognition

scores across groups reflect those found for trained scores. Therefore, children demonstrate

poorer vocoded speech recognition than adults across a wide range of ages, vocoder processing

types, stimuli, and procedures [12,24]. Only cases that include frequency-to-place shift reduce

differences between adults and children, where there is no difference by 6 mm of shift [12].

Although not directly addressed in the experimental design and analysis of the current

study, it may be that the difference between children and adults in vocoded speech recognition

is related to language development. A landmark study on vocoded speech recognition in chil-

dren by Eisenberg et al. [13] showed that noise-vocoded speech recognition depended on

whether stimuli were lexically easy or difficult, and differential use of context explained some

of the differences across age groups. In another study, Nittrouer et al. [36] tested 40 native

English-speaking adults and 7 year olds with four- and eight-channel noise-vocoded speech.

They found that the native-speaking adults had the highest performance, followed by native-

speaking children. They also tested 40 non-native English-speaking adults and found that their

performance was worse than the native-speaking children, even though the non-native adults

had a more mature auditory system. Those results suggest that the performance differences

between children and adults are due to language development rather than maturity of the audi-

tory system and processing of acoustical signals. The parallels between the current study and

by Eisenberg et al. [13] are especially important given the stimuli differed greatly. Eisenberg

et al. [13] used speech materials that were designed to be relatively child-friendly; the stimuli

also controlled for word frequency and neighborhood density in the context of word recogni-

tion in isolation and when embedded in sentences. In the current study, we used a list of CNC

words and IEEE sentences that are typically used with adult populations, which should have

emphasized any performance differences that result from language abilities.

Non-sensory factors such as neurocognitive processes are another important aspect of

developmental comparisons regarding vocoded speech recognition [13,18,37,38]. Recently

Roman et al. [31] replicated Eisenberg et al. [13], but added several additional neurocognitive

measures. The goal was to assess whether the ability to understand spectrally degraded speech

was related to non-auditory abilities, namely auditory attention, talker discrimination, and

verbal and non-verbal short-term working memory. There were significant correlations

between measures of auditory attention, short-term memory, and the ability of children to

understand isolated words and sentences that were vocoded. Given that the present study also

used isolated words and sentences, there is an important conclusion to be drawn here. If neu-

rocognition plays a role in impacting vocoded speech recognition, the age effects observed in

the current study may be robust and related to maturation more so than to specific stimuli.

A different aspect of vocoded speech processing was assessed by Tinnemore et al. [39] who

tested children’s ability to recognize emotional prosody in spectrally degraded stimuli. Here

too there was a strong developmental effect during childhood, with adults outperforming chil-

dren, and a strong predictor being non-verbal intelligence. The authors argue for the role of

experience in modulating developmental changes in the ability of children to extract informa-

tion from spectrally degraded speech.

Future directions for this work could address potential weaknesses of the current study. As

there was no effect of initial performance, training over a wide range of conditions seems less

important that focusing on a limited set of conditions so that the number of trials is larger to

increase statistical power. While we chose speech materials typically aimed for adult
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populations, verification of potential differences with an unprocessed control condition would

verify the age-related differences were not based on factors like vocabulary.

Endnotes

The average of the last three runs was used to reduce variability for conditions where the per-

formance had saturated and was stable; a similar approach could not be done for the first three

runs because performance rapidly improved at the beginning of the experiment.
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