HESP 710: INDUSTRIAL AND ENVIRONMENTAL NOISE PROBLEMS
Fall, 2015

Instructor: Samira Anderson, AuD., Ph.D.
Office: Lefrak Hall 0119B
Phone: 5-4224
Lab: Hearing Brain Lab, Lefrak Hall 0147
Email: sander22@umd.edu
Office hours: By appointment
Course Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 24</td>
<td>Noise measurement and instrumentation Risk assessment</td>
<td>In-class worksheet</td>
</tr>
<tr>
<td>September 29</td>
<td>Noise regulations</td>
<td>In-class worksheet</td>
</tr>
<tr>
<td>October 6</td>
<td>Efficacy of hearing conservation programs</td>
<td>Review for midterm</td>
</tr>
<tr>
<td>October 13</td>
<td>MIDTERM</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Readings</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>October 20</td>
<td>Hearing protective devices and fitting practicum</td>
<td>Class worksheet</td>
</tr>
<tr>
<td></td>
<td>2. Earlogs 1-21</td>
<td></td>
</tr>
<tr>
<td>October 27</td>
<td>Synergistic effects of noise and other agents</td>
<td>Media topic - Rachel</td>
</tr>
<tr>
<td>November 3</td>
<td>Noise-induced hearing loss and the military; Blast injury</td>
<td>Media topic – Daniel, guest lecturer</td>
</tr>
<tr>
<td>November 10</td>
<td>Recreational noise</td>
<td>Media topic - Erin</td>
</tr>
<tr>
<td>November 17</td>
<td>Hearing critical jobs/ Drafting hearing standards</td>
<td>Media topic – Mary, guest lecturer</td>
</tr>
</tbody>
</table>
(MCATs) carried out by infantry and combat-support personnel. *Noise Health*, 17(75), 98-107.

November 24

Therapeutic agents to prevent NIHL

Readings

December 1

Student presentations

December 8

Review

December 15

FINAL

Grading System

Summary of point system:

- In-class worksheets: 10 points each
- Media presentation: 10 points each
- Research paper/Project: 50 points each
- Noise survey: 60 points each
- Midterm: 120 points
- Final: 120 points

<table>
<thead>
<tr>
<th>Summary</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 worksheets x 10 pts</td>
<td>40</td>
</tr>
<tr>
<td>1 presentation x 10 pts</td>
<td>10</td>
</tr>
<tr>
<td>1 project x 50 pts</td>
<td>50</td>
</tr>
<tr>
<td>1 project x 60 pts</td>
<td>60</td>
</tr>
<tr>
<td>1 exam</td>
<td>120</td>
</tr>
<tr>
<td>1 final</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

University of Maryland Grade Policy

<table>
<thead>
<tr>
<th>Course Average</th>
<th>Course Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>97 – 100</td>
<td>A+</td>
</tr>
<tr>
<td>93 - 96</td>
<td>A</td>
</tr>
<tr>
<td>90 - 92</td>
<td>A-</td>
</tr>
<tr>
<td>87 - 89</td>
<td>B+</td>
</tr>
<tr>
<td>83 - 86</td>
<td>B</td>
</tr>
<tr>
<td>80 - 82</td>
<td>B-</td>
</tr>
</tbody>
</table>

LEARNER OUTCOMES

Students will acquire knowledge in noise control, hearing conservation, industrial audiology, occupational audiology, and fitness-for-duty evaluation.

As a result of knowledge obtained in this course, students will be able to:

1. Provide a historical outline of industrial audiology, noise control, and hearing conservation program development, including military audiology.
2. Reference the legal basis for hearing conservation and noise control programs.
3. Understand the legal basis for worker’s compensation resulting from overexposure to noise.
4. Measure and quantify noise levels and noise dose.
5. Develop and implement an effective hearing conservation program.
6. Select an appropriate hearing protective device, and evaluate effectiveness.
7. Understand how noise interacts with other physical and chemical exposures.
8. Identify, evaluate, and quantify noise effects using audiological test procedures.
9. Recommend noise control strategies and engineering controls.
10. Understand and manage special cases in noise, such as musicians, military members, extreme exposures, and those with special communication needs.
11. Have a working knowledge regarding research in prevention of noise induced hearing loss using pharmaceuticals
12. Evaluate and make recommendations for management of recreational noise.
13. Provide an audiometric fitness-for-duty evaluation.
14. Understand how to develop an audiometric standard based on essential job functions.

Each student’s knowledge and skills in these areas will be determined by the following assessment procedures:

1. Written examinations (one mid-term examination and one final examination).
2. Research abstracts/project
3. Noise measurement project
4. Attendance and participation in class and in-class worksheets

Research Paper or Project
Each student must submit a short research paper on a relevant topic of interest. Papers should be 5-10 pages in length, double-spaced, and must be appropriately referenced with at least three peer-reviewed journal articles. In lieu of research paper, you may also opt to submit a relevant project. Be creative! I am open to suggestions. Topic or project must be improved by instructor by 28 SEP 15; paper or other work product must be submitted to instructor via e-mail by 24 NOV 15. Duplicate topics are NOT allowed, so you are encouraged to make your selection early.

Research suggestions include, but are not limited to:

- Drugs for prevention of NIHL
- Temporary threshold shift
- Musicians and NIHL
- Blast exposure and NIHL
- Different effects of continuous/intermittent vs impulse/impact noise exposures
- Synergistic effects of industrial toxins and noise
- Biochemical changes following noise exposure
- Presbycusis and noise-induced hearing loss
- Non-auditory effects of noise
- Acoustic reflex and noise-induced hearing loss
- Ear protectors
- Forensic audiology
- Conditioning or toughening effects
Project suggestions include, but are not limited to:
 Compare different combinations of double protection
 Create a business plan for an industrial audiology service
 Develop a training video or brochure
 Develop a hearing standard for a particular job
 Develop a testing protocol for fitness for duty for a particular job
 Evaluate a particular product, pros and cons
 Review a relevant product liability case
 Establish real world NRR’s on a particular type of hearing protection
 Outline a noise control strategy for a particular industry
 Compare and contrast various strategies to establish PAR (Personal Attenuation Rating) or different fit-check systems currently available

Noise Measurement Project
Students are required to select an area or operation and perform a noise survey. Students must measure environmental noise using both a sound level meter and a noise dosimeter. Use the sound level meter to establish hazard radius; use the dosimeter to determine dose and whether or not the exposure rises to the level of OSHA’s PEL. The area or operation must potentially be noise hazardous. After gathering relevant data, each student will submit measurement data along with a brief presentation to the class describing the findings, and will offer recommendations for personnel who work or play in that environment.

Suggestions include, but are not limited to:
 Newspaper press room
 Bottling Plant
 Military Ordnance Test Center
 Airport
 Recreational setting such as Dave & Busters
 Bakery
 Military Air Station (Andrews AFB or Patuxent River)
 Local Firing Range
 Motocross or Drag Race
 Mining operation
 Wood working or furniture making operation
 Construction Site
 Landscaping operation
 Metro subway system
 Concert venue
 Local bar or restaurant

Suggested Report Format:
 Background – Why did you select this site or operation?
 Methodology – Describe IN DETAIL what you did: instrumentation used, procedures followed, how equipment was programmed; Keep a time log of what happened when so you can refer to it in your discussion.
Data - What you found: include relevant graphs, charts, and important data such as peak, TWA or LAVG (dBA and dBC), noise dose

Analysis – Your interpretation of what the data means

Recommendations and Conclusions – What you would recommend in terms of noise control, hearing protection, avoidance measures, etc. if someone were to work or play in this environment

Project sites must be approved by instructor. Each student must select a different site to ensure a wide range of samples. Sites must be selected and approved by instructor by 28 SEP 2015. Project is due 30 NOV 2015. Please plan accordingly. Dr. Gordon-Salant is providing three dosimeters for this project. Please see me to check them out.

UNIVERSITY POLICIES

Academic Integrity
The University administers an Honor Code and an Honor Pledge, available on the web at http://www.jpo.umd.edu/aca/honorpledge.htm. The Code prohibits students from cheating on exams, plagiarizing papers, submitting the same paper for credit in two courses without authorization, buying papers, submitting fraudulent documents, and forging signatures. Students are requested to write the following signed statement on each examination or assignment: “I pledge on my honor that I have not given or received any unauthorized assistance on this examination (or assignment).” Compliance with the code is administered by a Student Honor Council, which strives to promote a “community of trust” on the College Park campus. For additional information, see the Office of Judicial Programs and Student Ethical Development website (http://www.jpo.umd.edu/)

Accommodations for Students with Disabilities
If you have a documented disability and wish to discuss academic accommodations with me, please contact me before 28 SEP 15. If necessary, please contact the Disability Support Service (301-314-7682) for assistance in determining and implementing appropriate academic accommodations.

Confidentiality-Posting Grades
The University complies with the regulations set forth in the Buckley Amendment. The amendment protects the student from the disclosure of personal and academic information to anyone other than the student, including parents, except under special circumstances. Posting student grades with either student names or social security numbers-in while or in part-is strictly prohibited. Grades will be available on ELMS), UMEG, or directly from the instructor.

Religious Observances
The University System of Maryland policy on religious observances provides that students should not be penalized because of observances of their religious beliefs; students shall be given an opportunity, whenever, feasible, to make up within a reasonable time any academic assignment that is missed due to individual participation in religious observances. I will make every feasible effort to accommodate student’s requests based on attendance of religious observances. It is the
student’s responsibility to inform me of any intended absences for religious observances in advance. Notice should be provided as soon as possible, but no later than the end of the schedule adjustment period. Prior notification is especially important in connection with final examinations, since failure to reschedule a final examination before the conclusion of the final examination period may result in loss of credits during the semester. To review the University’s policy or view a variety of other religious holidays, see http://www.faculty.umd.edu/teach/religious.htm.

REQUIRED READINGS
HESP 710 Collection of Readings – are available as .pdf files on the course website.

Recommended Texts:
 CAOHC Manual (4th edition)